Imperial College i LSDS

L) Large-Scale Distributed Systems Group

Stateful Distributed Dataflow Graphs:
Imperative Big Data Programming
for the Masses

prp@doc.ic.ac.uk

Large-Scale Distributed Systems Group

Department of Computing, Imperial College London
http://Isds.doc.ic.ac.uk

EIT Digital Summer School on Cloud and Big Data 2015 — Stockholm, Sweden

Growth of Big Data Analytics

Big Data Analytics: gaining value from data

— Web analytics, fraud detection, system
management, networking monitoring,
business dashboard, ...

Growth of Data vs.
Growth of Data Analysts

Stored Data accumulating at 28% annual growth rate
Data Analysts in workforce growing at 5.7% growth rate

Data Analyst shortage

SR R R S S S S O S S S S S S i

Need to enable more users to perform data analytics)

Ratings (%)

30

25

20

Pt
(%)

10

0

M e
M ol

Programming Language Popularity

TIOBE Programming Community Index

Source: www.tiobe.com

== Java
w C
C++
e C#
== Python
== Objective-C
PHP
== Visual Basic .NET
== JavaScript
Perl

2002

2004 2006 2008 2010 2012 2014

Programming Models For Big Data?

Distributed dataflow frameworks tend to favour
programming models
— MapReduce, SQL, PIG, DryadLINQ, Spark, ...
— Facilitates consistency and fault tolerance issues

Domain experts tend to write
— Java, Matlab, C++, R, Python, Fortran, ...

Example: Recommender Systems

Recommendations based on past user behaviour through
(cf. Netflix, Amazon, ...):

User A
User A Recommend:
Ttem: » Q » “Apple
“iPhone” Watch”
Rating: 5
Customer activity . : Up-to-date
on website recommendations

(eg MapReduce, Hadoop, Spark, Dryad, Naiad, ...)

Exploits data-parallelism on cluster of machines

Collaborative Filtering in Java

Update with

new ratings / \
Matrix userItem = new Matrix();

Item-A | Item-B Matrix coOcc = new Matrix();
User-A 4 5
User-B 0 5
. userItem.setElement(user, item, rating);
User-Ttem matrix (UI) updateCoOccurrence(coOcc, userltem);
b
Vector userRow = userItem.getRow(user);
Vector userRec = coOcc.multiply(userRow);
return userRec;
Multiply for ¥
recommendation \ /
Item-A | Item-B
User-B [1|2 [X | Item-A 1 1
Item-B 1 2

Co-Occurrence matrix (CO)

Collaborative Filtering in Spark (Java)

int rank = 10;
int numIterations = 20;
MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), rank, numlIterations, 0.01);

JavaRDD<Tuple2<Object, Object>> userProducts = ratings.map(
new Function<Rating, Tuple2<Object, Object>>() {
public Tuple2<Object, Object> call(Rating r) {
return new Tuple2<Object, Object>(r.user(), r.product());
by
by
)i
JavaPairRDD<Tuple2<Integer, Integer>, Double> predictions = JavaPairRDD.fromJavaRDD(
model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map(
new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
by
by
)

JavaRDD<Tuple2<Double, Double>> ratesAndPreds =
JavaPairRDD.fromJavaRDD(ratings.map(
new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());

¥

)).join(predictions).values();

Collaborative Filtering in Spark (Scala)

val rank = 10
val numlIterations = 20
val model = ALS.train(ratings, rank, numIterations, 0.01)

val usersProducts = ratings.map {
case Rating(user, product, rate) => (user, product)
}
val predictions =
model.predict(usersProducts).map {
case Rating(user, product, rate) => ((user, product), rate)

}

val ratesAndPreds = ratings.map {

Qse Rating(user, product, rate) => ((user, product), rate)

}.join(predictions)

~

All data immutable

No fine-grained model updates

Stateless MapReduce Model

3

tr ot
e @ Q @

ttr ot

(.

(.

.

map

nd - adiil
-©-!l
-©-l[

s

partitioned data on
distributed file system

Data model: (key, value) pairs

Two processing functions:
map(kllvl) > "St(kZIVZ)
reduce(k,, list(v,)) = list (v3)

Benefits:
— Simple programming model
— Transparent parallelisation
— Fault-tolerant processing

Big Data Programming for the Masses

Our goals:
Imperative for big data apps
High throughput through on cluster

against node failures

System Mutable Large Low Iteration
State State Latency
MapReduce No n/a No No
Spark No n/a No Yes
Storm No n/a Yes No

Naiad Yes No Yes Yes

10

Stateful Dataﬂow Graphs (SDGs)

0
: |
i 0
i 0
I
I
I
! Annotated Java program: : :SEEP distributed dataflow)
: (@Partitioned, @Partial, @Global, ..) | I | s framework :
i ava | T Data-parallel _=.|___> Cluster | 1
: Program.java Static | : Stateful I : El)ynarpigcl i
scale ou 2
I = g;(;?;gi? T Dataflow Graph :|checkpoint-based ' :
i : I (SDG) ! : fault tolerance I
I [0

[
: Experimental evaluation results I
I

11

State as First Class Citizen

Tasks process data

Y

Item 1 Item 2 | >
3:::: i i Dataflows
represent
data
State Elements -
(SEs) represent ’ > ’< >
state

Tasks have access to arbitrary state

represent in-memory data structures
— SEs are
— Tasks have to SEs
— SEs can be shared between tasks

12

Challenges with Large State

Mutable state leads to concise algorithms but complicates
scaling and fault tolerance

- ~ Big Data
problem:
Matrices

become large

Matrix userItem = new Matrix();
Matrix coOcc = new Matrix();

- J

State will not fit into single node

Challenge: Handling of distributed state?

13

Distributed Mutable State

State Elements support two abstractions for distributed
mutable state:

Tasks access partitioned state by key

Tasks can access replicated state

14

(I) Partitioned State Elements

Partitioned SE split into disjoint partitions

Key space: [0-N] ‘ I:>

User-Item matrix (UI)

Item-A | Item-B

o
Access i hash(msg.id
by key User-A 4 5 (msg.id) <>/'
User-B 0 5
Dataflow routed according to
hash function

State partitioned according
to partitioning key

(II) Partial State Elements

Partial SEs are replicated (when partitioning is impossible)

— Tasks have local access
Access to partial SEs either local or global

’/)O_-)‘ - _*‘

~

4

Local access: Global access:
Data sent to one Data sent to all
16

State Synchronisation with Partial SEs

Reading all partial SE instances results in set of

&
:<gf O :> Merge

logic

Requires application-specific merge logic
— Merge task reconciles state and updates partial SEs

17

State Synchronisation with Partial SEs

Reading all partial SE instances results in set of

W

&w
]
<% O=
o Mer_ge
logic

Multiple
partial values

18

State Synchronisation with Partial SEs

Reading all partial SE instances results in set of

g
- Merge
logic
Multiple Collect partial
partial values values

Barrier collects partial state

19

SDG for Collaborative Filtering

2
> updateCoOcc)
: S :

\

rec (TE) i i
_—|'>I geluservec '
request | dataflow!

i \ A EStateE Q i
Element
Task) E(SE)
Element ¢ i N Mg

20

SDG for Logistic Regression

Requires support for iteration

21

Stateful Dataflow Graphs (SDGs)

-
4
Lo DO

|An notated Java program : SEEP distributed dataflow
: (@Partitioned, @Partial, @Global, ..) | framework

I ; [Data-parallel | 3f uster

: Program.java |_|—>'Static I Stateful I?ynamiSCL ——

! o pogam || Dataflow Graph | .ontomsed EEEES

i B (SDG) fault tolerance :

| | A
I—-----------‘

22

Partitioned State Annotation

@Partition field annotation indicates

@Partitioned Matrix userltem = new Matrix();

userltem.setElement(user, item, rating);

R
hash(msg.id)

Vector userRow = userItem.getRow(user);

state

23

Partial State and Global Annotations

@Partial Matrix coOcc = new Matrix();
g

~N
updateCoOccurrence(@Global coOcc, userltem);

@Partial field annotation indicates

@Global annotates variable to indicate

24

Partial and Collection Annotation

@Partial Matrix coOcc = new Matrix();

@Partial Vector puRec = @Global coOcc.multiply(userRow);

4

Vector merge(@Collection Vector[] v){
~

@Collection annotation indicates

25

Java2SDG: Translation Process

—

4)

Extract TEs, SEs Live variable
:> [and accesses J :> [analysis J
Program.java l - SOOT

_ Y, Oi O Framework
g % %
OO0O0O

—

Extract state and state access patterns through static code analysis

—

[TE and SE J | B s
—> access code |::> - _
assembly — Javassist

SEEP runnable

—

Generation of runnable code using TE and SE connections

26

Stateful Dataflow Graphs (SDGs)

-0

4
.G I

Annotated Java program :SEEP distributed dataflowj
(@Partitioned, @Partial, @Global, ...) Iframework :
Program.java |-———> Cluster| 1|
2 J Static Stateful : Dynamic s i

S g;c;c_lzjrgi? Dataflow Graph |check|35(():ian|f-I;)alljsfezcgil E € :

Y (SDG) ! fault tolerance I

I I

l |

27

Scale Out and Fault Tolerance for SDGs

High/bursty input rates = Exploit data-parallelism
100%

% w*“ |:' > A Partitioning
7 A%%)% AA of state

0%

Large scale deployment =» Handle node failures

Loss of state
after node
failure

28

Dataflow Framework Managing State

* Expose state as external entity to be managed by the distributed
dataflow framework

Framework has to:
— Backup and recover state elements
— Partition state elements

Integrated mechanism for and

— Node recovery and scale out with state support
29

What is State?

A Processing state | Buffer state
Item 1 Item 2 Data Data Data Data
UserA 2 5 tsi ts2 ts3 ts4
User B 4 1 - -
1l
B

—

30

State Management Primitives

Checkpoint

- Makes state available to framework
- Attaches last processed data timestamp

A Backup
- Moves copy of state from

one node to another
Restore A

Partition

Q Q - Splits state to scale out tasks

31

State Primitive: Checkpointing

Challenge: Efficient checkpointing of large state in Java?
— No updates allowed while state is being checkpointed
— Checkpointing state should not impact data processing path

Dirty state

Asynchronous, lock-free
) checkpointing
1. Freeze mutable state for checkpointing
2. Dirty state supports updates concurrently
’\/ \,‘ 3. Reconcile dirty state

O

- J

32

State Primitives: Backup and Restore

Backup Checkpoint

D Data
- t2)

ad “Dawas Data Data
t4 t3 t2 t1

€ Da

33

State Primitives: Partition

Processing state modeled as (key, value) dictionary

State partitioned according to key k
— Same key used to partition streams

userld 0-n userl
@ d mx 6=
userld x-n
A) -

34

Failure Recovery and Scale Out

TWO cases:
- Node B fails =& Recover
- Node B becomes bottleneck = Scale out

35

Recovering Failed Nodes

Periodically,, stateful tasks checkpoint and back up .
ctate to dAUghAPEI KpatEh I Scka SHoBET Guickly
* Backup

AA

@ Checkpoint
B

@&

o Restore

State restored and unprocessed data replayed from buffer

36

Scaling Out Tasks

Finally, upstream node replays unprocessed
data to update checkpointed state

For scale out, backup node already has state elements
to be parallelised

37

Distributed M-to-N Backup/Recovery

Challenge: Fast recovery?
— Backups large and cannot be stored in memory
— Large writes to disk through network have high cost

-

N

-/

__>O ‘ parallel recovery
_ — Partition state and backup to
_)O multiple nodes

\ J — Recover state to multiple nodes 38

Stateful Dataflow Graphs (SDGs)

-
4
—~(O)—~

Annotated Java program SEEP distributed dataflow
(@Partitioned, @Partial, @Global, ...) framework
. | 5 Data-parallel | 3 Auster
Program.java Static Stateful Dynamic e

= g :;gl];gi? Dataflow Gra ph checkpst():?r:f- I;):sfe%
w (SDG) fault tolerance

"*‘77\
X
N\ N (S5
. X
n-------------------------

[
: Experimental evaluation results I
I

39

Throughput: Logistic Regression

100 GB training dataset for classification
Deployed on Amazon EC2 ("“m1.xlarge” VMs with 4 vCPUs and 16 GB RAM)

60 | | T |
’,%

50

40

30

20

10

O]]]]
25 50 75 100

Number of nodes

SDG -

Spark

Throughput (GB/s)

SDGs have comparable throughput to Spark despite mutable state ,

Mutable State Access: Collaborative Filtering

Collaborative filtering, while changing read/write ratio (add/getRating)
Private cluster (4-core 3.4 GHz Intel Xeon servers with 8 GB RAM)

Throughput (1000 requests/s)

20

15

10

SDGs serve fresh results over large mutable state

| | | | |
Throughp;Ut —— - -
| Laten(l:y f___‘_‘_‘_‘lj | |
1:5 1:2 1:1 2:1 5:1

Workload (state read/write ratio)

11000

1100

Latency (ms)

41

Elasticity: Linear Road Benchmark

Linear Road Benchmark [vLps04] — |
— Network of toll roads of 4 nsances []

Calculator*
— Input rate increases over time — ' .

— SLA: results < 5 secs —
Deployed on Amazon EC2 (c1 & m1 xlarge instances)

7 { { 60
+4 55
Scales to 6 % 50
with 60 VMs 2 5 4>
S 40
. % 4+ 35
L=512 highest - 30
reported result in @ 3r 25
literature pvioe12] a . 20
3 2 -+ 15
Throughput (tuples/s) ——
1 Input rate (tuples/s) —¥— | 10
Num. of VMs 13
O | | | O
0 500 1000 1500 2000
Time (seconds)
SDGs can scale dynamically based on workload

42

Number of VMs

Large State Size: Key/Value Store

Increase state size in distributed key/value store

Aggregated memory (GB)

SDGs can support online services with mutable state

4\% 2 | | | |

2 Throughput ——

>

g 15 | = 1000,(3
c E
=2 1L 1 100
E 5
= ©
2 05 4 10 -
L

(@)

3

b= 0 1

= 50 100 150 200

Summary

Programming models for Big Data matter
— Logic increasingly pushed into bespoke APIs
— Existing models do not support fine-grained mutable state

support mutable state
— Automatic translation of annotated Java programs to SDGs
— SDGs introduce new challenges in terms of parallelism and failure recovery
— Automatic state partitioning and checkpoint-based recovery

SEEP available on GitHub:

Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Pietzuch, "Integrating Scale Out and
Fault Tolerance in Stream Processing using Operator State Management”, SIGMOD’13

Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Pietzuch, "Making State Explicit for
Imperative Big Data Processing”, USENIX ATC'14

_ Peter Pietzuch
Thank you! Any Questions? <prp@doc.ic.ac.uk>

http://Isds.doc.ic.ac.uk &oe=TionNs

