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Growth of Big Data Analytics 

• Big Data Analytics: gaining value from data 
–  Web analytics, fraud detection, system  

management, networking monitoring, 
business dashboard, … 

2 Need to enable more users to perform data analytics 



Programming Language Popularity 
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Programming Models For Big Data? 

• Distributed dataflow frameworks tend to favour functional, 
declarative programming models 

–  MapReduce, SQL, PIG, DryadLINQ, Spark, … 
–  Facilitates consistency and fault tolerance issues 

• Domain experts tend to write imperative programs 
–  Java, Matlab, C++, R, Python, Fortran, … 



Distributed dataflow graph 

Example: Recommender Systems 

Rating: 3 
User A 
Item: 

“iPhone” 
Rating: 5 

User A 
Recommend: 

“Apple 
Watch” 

Customer activity 
on website 

Up-to-date  
recommendations 

• Recommendations based on past user behaviour through 
collaborative filtering (cf. Netflix, Amazon, …): 

(eg MapReduce, Hadoop, Spark, Dryad, Naiad, …) 
 
Exploits data-parallelism on cluster of machines 



Collaborative Filtering in Java 
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Matrix userItem = new Matrix(); 
Matrix coOcc = new Matrix(); 

void addRating(int user, int item, int rating) {  
    userItem.setElement(user, item, rating); 
    updateCoOccurrence(coOcc, userItem); 
} 

Vector getRec(int user) { 
    Vector userRow = userItem.getRow(user); 
    Vector userRec = coOcc.multiply(userRow);  
    return userRec; 
} 

Item-A Item-B 
User-A 4 5 
User-B 0 5 

Item-A Item-B 

Item-A 1 1 
Item-B 1 2 

User-Item matrix (UI) 

Co-Occurrence matrix (CO) 

Update with 
new ratings 

Multiply for 
recommendation 

User-B 1 2 x 



Collaborative Filtering in Spark (Java) 
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    // Build the recommendation model using ALS 
    int rank = 10; 
    int numIterations = 20; 
    MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), rank, numIterations, 0.01);  
 
    // Evaluate the model on rating data 
    JavaRDD<Tuple2<Object, Object>> userProducts = ratings.map( 
      new Function<Rating, Tuple2<Object, Object>>() { 
        public Tuple2<Object, Object> call(Rating r) { 
          return new Tuple2<Object, Object>(r.user(), r.product()); 
        } 
      } 
    ); 
    JavaPairRDD<Tuple2<Integer, Integer>, Double> predictions = JavaPairRDD.fromJavaRDD( 
      model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map( 
        new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() { 
          public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){ 
            return new Tuple2<Tuple2<Integer, Integer>, Double>( 
              new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating()); 
          } 
        } 
    )); 
    JavaRDD<Tuple2<Double, Double>> ratesAndPreds =  
      JavaPairRDD.fromJavaRDD(ratings.map( 
        new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() { 
          public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){ 
            return new Tuple2<Tuple2<Integer, Integer>, Double>( 
              new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating()); 
          } 
        } 
    )).join(predictions).values(); 



Collaborative Filtering in Spark (Scala) 
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// Build the recommendation model using ALS 
val rank = 10 
val numIterations = 20 
val model = ALS.train(ratings, rank, numIterations, 0.01) 
 
// Evaluate the model on rating data 
val usersProducts = ratings.map { 
  case Rating(user, product, rate) => (user, product) 
} 
val predictions =  
  model.predict(usersProducts).map { 
    case Rating(user, product, rate) => ((user, product), rate) 
  } 
val ratesAndPreds = ratings.map { 
  case Rating(user, product, rate) => ((user, product), rate) 
}.join(predictions) 

• All data immutable 

• No fine-grained model updates 



Stateless MapReduce Model 
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• Data model: (key, value) pairs 

•   

• Two processing functions: 
map(k1,v1) à list(k2,v2) 
reduce(k2, list(v2)) à list (v3) 

•    

• Benefits: 
–  Simple programming model 
–  Transparent parallelisation 
–  Fault-tolerant processing 

map 

reduce 

shuffle 

partitioned data on 
distributed file system 

M M M 

R R R 



Big Data Programming for the Masses 

• Our goals: 

•  Imperative Java programming model for big data apps 

•  High throughput through data-parallel execution on cluster 

•  Fault tolerance against node failures 
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System Mutable 
State 

Large 
State 

Low 
Latency 

Iteration 

MapReduce No n/a No No 

Spark No n/a No Yes 

Storm No n/a Yes No 

Naiad Yes No Yes Yes 

SDG Yes Yes Yes Yes 



Stateful Dataflow Graphs (SDGs) 
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Program.java Cluster 

Annotated Java program 
(@Partitioned, @Partial, @Global, …) 

Static 
program 
analysis 

SEEP distributed dataflow 
framework 

Dynamic 
scale out & 

checkpoint-based 
fault tolerance 

1

2 3

4

Experimental evaluation results 

Data-parallel 
Stateful 

Dataflow Graph 
(SDG) 



State as First Class Citizen 

12 

User A 
Item 2 

User B 

Item 1 
2 
4 1 

5 

Tasks process data 

State Elements 
(SEs) represent 

state 

Dataflows 
represent  

data 

• Tasks have access to arbitrary state 

• State elements (SEs) represent in-memory data structures 
–  SEs are mutable 
–  Tasks have local access to SEs 
–  SEs can be shared between tasks 



Challenges with Large State 

• Mutable state leads to concise algorithms but complicates 
scaling and fault tolerance 

• State will not fit into single node 

• Challenge: Handling of distributed state? 
13 

Big Data 
problem: 
Matrices 

become large 

Matrix userItem = new Matrix(); 
Matrix coOcc = new Matrix(); 



Distributed Mutable State 

• State Elements support two abstractions for distributed 
mutable state: 

• Partitioned SEs: 
 Tasks access partitioned state by key 

• Partial SEs:  
 Tasks can access replicated state 
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(I) Partitioned State Elements 

• Partitioned SE split into disjoint partitions 
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Dataflow routed according to  
hash function 

Item-A Item-B 

User-A 4 5 

User-B 0 5 

Access 
by key 

State partitioned according 
to partitioning key 

User-Item matrix (UI) 

hash(msg.id) 

Key space: [0-N] 

[0-k] 

[(k+1)-N] 



(II) Partial State Elements 

• Partial SEs are replicated (when partitioning is impossible) 
–  Tasks have local access 

 

• Access to partial SEs either local or global 
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Local access: 
Data sent to one 

Global access: 
Data sent to all 



State Synchronisation with Partial SEs 

• Reading all partial SE instances results in set of partial values 

• Requires application-specific merge logic 
–  Merge task reconciles state and updates partial SEs 

17 

Merge 
logic 



State Synchronisation with Partial SEs 

• Reading all partial SE instances results in set of partial values 

18 

Multiple 
partial values 

Merge 
logic 



State Synchronisation with Partial SEs 

• Reading all partial SE instances results in set of partial values 

• Barrier collects partial state 

19 

Multiple 
partial values 

Collect partial 
values 

Merge 
logic 



SDG for Collaborative Filtering 

be scheduled for execution or materialised in a pipeline,
each with different performance implications. Some
frameworks follow a hybrid approach in which tasks on
the same node are pipelined but not between nodes.

Since tasks in stateless dataflows are scheduled to pro-
cess coarse-grained batches of data, such systems can
exploit the full parallelism of a cluster but they can-
not achieve low processing latency. For lower latency,
batched dataflows divide data into small batches for pro-
cessing and use efficient, yet complex, task schedulers
to resolve data dependencies. They have a fundamental
trade-off between the lower latency of smaller batches
and the higher throughput of larger ones—typically they
burden developers with making this trade-off [39].

Continuous dataflow adopts a streaming model with
a pipeline of tasks. It does not materialise intermedi-
ate data between nodes and thus has lower latency with-
out a scheduling overhead: as we show in §6, batched
dataflows cannot achieve the same low latencies. Due to
our focus on online processing with low latency, SDGs
are fully pipelined (see §3.1).

To improve the performance of iterative computation
in dataflows, early frameworks such as HaLoop [5] cache
the results of one iteration as input to the next. Recent
frameworks [15, 38, 25, 9] generalise this concept by
permitting iteration over arbitrary parts of the dataflow
graph, executing tasks repeatedly as part of loops. Simi-
larly SDGs support iteration explicitly by permitting cy-
cles in the dataflow graph.
Failure recovery. To recover from failure, frameworks
either recompute state based on previous data or check-
point state to restore it. For recomputation, Spark rep-
resents dataflows as RDDs [38], which can be recom-
puted deterministically based on their lineage. Contin-
uous dataflow frameworks use techniques such as up-
stream backup [14] to reprocess buffered data after fail-
ure. Without checkpointing, recomputation can lead to
long recovery times.

Checkpointing periodically saves state to disk or the
memory of other nodes. With large state, this becomes
resource-intensive. SEEP recovers state from memory,
thus doubling the memory requirement of a cluster [10].

A challenge is how to take consistent checkpoints
while processing data. Synchronous global checkpoin-
ting stops processing on all nodes to obtain consistent
snapshots, thus reducing performance. For example, Na-
iad’s “stop-the-world” approach exhibits low throughput
with large state sizes [26]. Asynchronous global check-
pointing, as used by Piccolo [30], permits nodes to take
consistent checkpoints at different times.

Both techniques include all global state in a check-
point and thus require all nodes to restore state after fail-
ure. Instead, SDGs use an asynchronous checkpointing
mechanism with log-based recovery. As described in §5,

updateUserItemnew 
rating

rec
request merge

coOcc

rec
result

n1 n2

n3

State 
Element 

(SE)

dataflow

Task
Element 

(TE)
getUserVec

updateCoOcc

user
Item

getRecVec

Figure 1: Stateful dataflow graph for CF algorithm

it does not require global coordination between nodes
during recovery, and it uses dirty state to minimise the
disruption to processing during local checkpointing.

3 Stateful Dataflow Graphs
The goal of stateful dataflow graphs (SDGs) is to make
it easy to translate imperative programs with mutable
state to a dataflow representation that performs paral-
lel, iterative computation with low latency. Next we de-
scribe their model (§3.1), how they support distributed
state (§3.2) and how they are executed (§3.3).

3.1 Model
We explain the main features of SDGs using the CF al-
gorithm from §2.1 as an example. As shown in Fig. 1,
an SDG has two types of vertices: task elements, t 2 T ,
transform input to output dataflows; and state elements,
s 2 S, represent the state in the SDG.

Access edges, a = (t,s) 2 A, connect task elements to
the state elements that they read or update. To facilitate
the allocation of task and state elements to nodes, each
task element can only access a single state element, i.e. A
is a partial function: (ti,s j) 2 A,(ti,sk) 2 A)s j = sk.
Dataflows are edges between task elements, d = (ti, t j) 2
D, and contain data items.
Task elements (TEs) are not scheduled for execution but
the entire SDG is materialised, i.e. each TE is assigned to
one or more physical nodes. Since TEs are pipelined, it is
unnecessary to generate the complete output dataflow of
a TE before it is processed by the next TE. Data items are
therefore processed with low latency, even across a se-
quence of TEs, without scheduling overhead, and fewer
data items are handled during failure recovery (see §5).

The SDG in Fig. 1 has five TEs assigned to three
nodes: the updateUserItem, updateCoOcc TEs realise the
addRating function from Alg. 1; and the getUserVec,
getRecVec and merge TEs implement the getRec function.
We explain the translation process in §4.2.
State elements (SEs) encapsulate the state of the compu-
tation. They are implemented using efficient data struc-
tures, such as hash tables or indexed sparse matrices. In
the next section, we describe the abstractions for dis-
tributed SEs, which span multiple nodes.

Fig. 1 shows the two SEs of the CF algorithm: the
userItem and the coOcc matrices. The access edges spec-

4
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SDG for Logistic Regression 

mergetrain

classify

weights

items

item result
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• Requires support for iteration 



Stateful Dataflow Graphs (SDGs) 
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Program.java Cluster 

Annotated Java program 
(@Partitioned, @Partial, @Global, …) 

Static 
program 
analysis 

SEEP distributed dataflow 
framework 

Dynamic 
scale out & 

checkpoint-based 
fault tolerance 

2

Data-parallel 
Stateful 

Dataflow Graph 
(SDG) 



Partitioned State Annotation 
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@Partitioned Matrix userItem = new Matrix(); 
Matrix coOcc = new Matrix(); 
 
void addRating(int user, int item, int rating) {  
  userItem.setElement(user, item, rating); 
  updateCoOccurrence(coOcc, userItem); 
} 
 
Vector getRec(int user) { 
  Vector userRow = userItem.getRow(user); 
  Vector userRec = coOcc.multiply(userRow);  
  return userRec; 
} 
 

@Partition field annotation indicates partitioned state 

hash(msg.id) 



Partial State and Global Annotations 
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@Partitioned Matrix userItem = new Matrix(); 
@Partial Matrix coOcc = new Matrix(); 
 
void addRating(int user, int item, int rating) {  
  userItem.setElement(user, item, rating); 
  updateCoOccurrence(@Global coOcc, userItem); 
} 

@Global annotates variable to indicate access to all partial 
instances 

@Partial field annotation indicates partial state 



Partial and Collection Annotation 
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@Partitioned Matrix userItem = new Matrix(); 
@Partial Matrix coOcc = new Matrix(); 
 
Vector getRec(int user) { 
  Vector userRow = userItem.getRow(user); 
  @Partial Vector puRec = @Global coOcc.multiply(userRow);  
  Vector userRec = merge(puRec); 
  return userRec; 
} 
 
Vector merge(@Collection Vector[] v){ 
  /*…*/ 
} 
 

@Collection annotation indicates merge logic 



Program.java 

Java2SDG: Translation Process 
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Extract TEs, SEs 
and accesses 

Live variable 
analysis 

TE and SE 
access code 
assembly 

SEEP runnable 

SOOT 
Framework 

Javassist 

Extract state and state access patterns through static code analysis 

Generation of runnable code using TE and SE connections 

Annotated  
Program.java 



Stateful Dataflow Graphs (SDGs) 
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Program.java Cluster 

Annotated Java program 
(@Partitioned, @Partial, @Global, …) 

Static 
program 
analysis 

SEEP distributed dataflow 
framework 

Dynamic 
scale out & 

checkpoint-based 
fault tolerance 

3

Data-parallel 
Stateful 

Dataflow Graph 
(SDG) 



Scale Out and Fault Tolerance for SDGs 

• High/bursty input rates è Exploit data-parallelism 

 

 

•  Large scale deployment è Handle node failures 

  

28 

0%

50%

100%

Partitioning 
of state 

Loss of state 
after node 
failure 



Dataflow Framework Managing State 
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•  Framework has state management primitives to: 
–  Backup and recover state elements 
–  Partition state elements 

•  Integrated mechanism for scale out and failure recovery 
–  Node recovery and scale out with state support 

E  Expose state as external entity to be managed by the distributed 
dataflow framework 



What is State? 

 
 
 
A 

 
 
 
C 

 
 
 
B 

 
 

Processing state Buffer state 

Data 
ts1 

Data 
ts2 

Data 
ts3 

Data 
ts4 User A 

Item 2 

User B 

Item 1 
2 

4 1 

5 
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State Management Primitives 

 
 
 
 

ts - Makes state available to framework 
- Attaches last processed data timestamp 

Restore 

ts 
Backup 

 
 
 
 

 
 
 
 
A 

 
 
 
 

A1 

Checkpoint 

Partition 

- Moves copy of state from  
   one node to another 

- Splits state to scale out tasks 

A2 
31 



State Primitive: Checkpointing 

• Challenge: Efficient checkpointing of large state in Java? 
–  No updates allowed while state is being checkpointed 
–  Checkpointing state should not impact data processing path 

32 

Dirty state 

• Asynchronous, lock-free 
checkpointing 

1.  Freeze mutable state for checkpointing 
2.  Dirty state supports updates concurrently 
3.  Reconcile dirty state 
 



State Primitives: Backup and Restore 
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Checkpoint 
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Backup 
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State Primitives: Partition 

Processing state modeled as (key, value) dictionary 

State partitioned according to key k 
–  Same key used to partition streams 

0-x 

x-n 

userId 0-n userId 0-x 

userId x-n 

A1 

A2 

 
 

userId 0-n 0-n 
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Failure Recovery and Scale Out 
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A 

Two cases: 
-  Node B fails è Recover 
-  Node B becomes bottleneck è Scale out 

B



Recovering Failed Nodes 
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B 

 
 
 
 
B

 
 
B 

New node 
B

B

State restored and unprocessed data replayed from buffer 

Use backed up state to recover quickly 
 

E  Restore 

Periodically, stateful tasks checkpoint and back up  
state to designated upstream backup node 

BBB E  Checkpoint 

E  Backup 



Scaling Out Tasks 
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B 

 
 
 
A 
 

B

For scale out, backup node already has state elements 
to be parallelised 

 
 
B1 

New node 

B 

B1 

B 

B1 

E  Partition 

E  Restore 

Finally, upstream node replays unprocessed 
data to update checkpointed state 



Distributed M-to-N Backup/Recovery 

• Challenge: Fast recovery? 
–  Backups large and cannot be stored in memory 
–  Large writes to disk through network have high cost 
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• M to N distributed backup and 
parallel recovery 

–  Partition state and backup to 
multiple nodes 

–  Recover state to multiple nodes 



Stateful Dataflow Graphs (SDGs) 
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Program.java Cluster 

Annotated Java program 
(@Partitioned, @Partial, @Global, …) 

Static 
program 
analysis 

SEEP distributed dataflow 
framework 

Dynamic 
scale out & 

checkpoint-based 
fault tolerance 

4

Experimental evaluation results 
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Throughput: Logistic Regression 
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Mutable State Access: Collaborative Filtering 

Collaborative filtering, while changing read/write ratio (add/getRating) 
Private cluster (4-core 3.4 GHz Intel Xeon servers with 8 GB RAM ) 
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Scales to L=350 
with 60 VMs  
 
L=512 highest  
reported result in  
literature [VLDB’12] 

•  Linear Road Benchmark [VLDB’04] 
–  Network of toll roads of size L 
–  Input rate increases over time 
–  SLA: results < 5 secs 

•  Deployed on Amazon EC2 (c1 & m1 xlarge instances) 

SDGs can scale dynamically based on workload 



Large State Size: Key/Value Store 

Increase state size in distributed key/value store 
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Summary 
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• Programming models for Big Data matter 
–  Logic increasingly pushed into bespoke APIs 
–  Existing models do not support fine-grained mutable state 

• Stateful Dataflow Graphs support mutable state 
–  Automatic translation of annotated Java programs to SDGs 
–  SDGs introduce new challenges in terms of parallelism and failure recovery 
–  Automatic state partitioning and checkpoint-based recovery 

• SEEP available on GitHub: https://github.com/lsds/Seep/ 

Peter Pietzuch 
<prp@doc.ic.ac.uk> 

http://lsds.doc.ic.ac.uk 
Thank you! Any Questions? 
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