
Peter R. Pietzuch
prp@doc.ic.ac.uk

Stateful Distributed Dataflow Graphs:
Imperative Big Data Programming

for the Masses

Peter Pietzuch

Large-Scale Distributed Systems Group
Department of Computing, Imperial College London

http://lsds.doc.ic.ac.uk

EIT Digital Summer School on Cloud and Big Data 2015 – Stockholm, Sweden

prp@doc.ic.ac.uk

Growth of Big Data Analytics

• Big Data Analytics: gaining value from data
–  Web analytics, fraud detection, system

management, networking monitoring,
business dashboard, …

2 Need to enable more users to perform data analytics

Programming Language Popularity

3

Programming Models For Big Data?

• Distributed dataflow frameworks tend to favour functional,
declarative programming models

–  MapReduce, SQL, PIG, DryadLINQ, Spark, …
–  Facilitates consistency and fault tolerance issues

• Domain experts tend to write imperative programs
–  Java, Matlab, C++, R, Python, Fortran, …

Distributed dataflow graph

Example: Recommender Systems

Rating: 3
User A
Item:

“iPhone”
Rating: 5

User A
Recommend:

“Apple
Watch”

Customer activity
on website

Up-to-date
recommendations

• Recommendations based on past user behaviour through
collaborative filtering (cf. Netflix, Amazon, …):

(eg MapReduce, Hadoop, Spark, Dryad, Naiad, …)

Exploits data-parallelism on cluster of machines

Collaborative Filtering in Java

6

Matrix userItem = new Matrix();
Matrix coOcc = new Matrix();

void addRating(int user, int item, int rating) {
 userItem.setElement(user, item, rating);
 updateCoOccurrence(coOcc, userItem);
}

Vector getRec(int user) {
 Vector userRow = userItem.getRow(user);
 Vector userRec = coOcc.multiply(userRow);
 return userRec;
}

Item-A Item-B
User-A 4 5
User-B 0 5

Item-A Item-B

Item-A 1 1
Item-B 1 2

User-Item matrix (UI)

Co-Occurrence matrix (CO)

Update with
new ratings

Multiply for
recommendation

User-B 1 2 x

Collaborative Filtering in Spark (Java)

7

 // Build the recommendation model using ALS
 int rank = 10;
 int numIterations = 20;
 MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), rank, numIterations, 0.01);

 // Evaluate the model on rating data
 JavaRDD<Tuple2<Object, Object>> userProducts = ratings.map(
 new Function<Rating, Tuple2<Object, Object>>() {
 public Tuple2<Object, Object> call(Rating r) {
 return new Tuple2<Object, Object>(r.user(), r.product());
 }
 }
);
 JavaPairRDD<Tuple2<Integer, Integer>, Double> predictions = JavaPairRDD.fromJavaRDD(
 model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map(
 new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
 public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
 return new Tuple2<Tuple2<Integer, Integer>, Double>(
 new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
 }
 }
));
 JavaRDD<Tuple2<Double, Double>> ratesAndPreds =
 JavaPairRDD.fromJavaRDD(ratings.map(
 new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
 public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
 return new Tuple2<Tuple2<Integer, Integer>, Double>(
 new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
 }
 }
)).join(predictions).values();

Collaborative Filtering in Spark (Scala)

8

// Build the recommendation model using ALS
val rank = 10
val numIterations = 20
val model = ALS.train(ratings, rank, numIterations, 0.01)

// Evaluate the model on rating data
val usersProducts = ratings.map {
 case Rating(user, product, rate) => (user, product)
}
val predictions =
 model.predict(usersProducts).map {
 case Rating(user, product, rate) => ((user, product), rate)
 }
val ratesAndPreds = ratings.map {
 case Rating(user, product, rate) => ((user, product), rate)
}.join(predictions)

• All data immutable

• No fine-grained model updates

Stateless MapReduce Model

9

• Data model: (key, value) pairs

• 

• Two processing functions:
map(k1,v1) à list(k2,v2)
reduce(k2, list(v2)) à list (v3)

• 

• Benefits:
–  Simple programming model
–  Transparent parallelisation
–  Fault-tolerant processing

map

reduce

shuffle

partitioned data on
distributed file system

M M M

R R R

Big Data Programming for the Masses

• Our goals:

•  Imperative Java programming model for big data apps

•  High throughput through data-parallel execution on cluster

•  Fault tolerance against node failures

10

System Mutable
State

Large
State

Low
Latency

Iteration

MapReduce No n/a No No

Spark No n/a No Yes

Storm No n/a Yes No

Naiad Yes No Yes Yes

SDG Yes Yes Yes Yes

Stateful Dataflow Graphs (SDGs)

11

Program.java Cluster

Annotated Java program
(@Partitioned, @Partial, @Global, …)

Static
program
analysis

SEEP distributed dataflow
framework

Dynamic
scale out &

checkpoint-based
fault tolerance

1

2 3

4

Experimental evaluation results

Data-parallel
Stateful

Dataflow Graph
(SDG)

State as First Class Citizen

12

User A
Item 2

User B

Item 1
2
4 1

5

Tasks process data

State Elements
(SEs) represent

state

Dataflows
represent

data

• Tasks have access to arbitrary state

• State elements (SEs) represent in-memory data structures
–  SEs are mutable
–  Tasks have local access to SEs
–  SEs can be shared between tasks

Challenges with Large State

• Mutable state leads to concise algorithms but complicates
scaling and fault tolerance

• State will not fit into single node

• Challenge: Handling of distributed state?
13

Big Data
problem:
Matrices

become large

Matrix userItem = new Matrix();
Matrix coOcc = new Matrix();

Distributed Mutable State

• State Elements support two abstractions for distributed
mutable state:

• Partitioned SEs:
 Tasks access partitioned state by key

• Partial SEs:
 Tasks can access replicated state

14

(I) Partitioned State Elements

• Partitioned SE split into disjoint partitions

15

Dataflow routed according to
hash function

Item-A Item-B

User-A 4 5

User-B 0 5

Access
by key

State partitioned according
to partitioning key

User-Item matrix (UI)

hash(msg.id)

Key space: [0-N]

[0-k]

[(k+1)-N]

(II) Partial State Elements

• Partial SEs are replicated (when partitioning is impossible)
–  Tasks have local access

• Access to partial SEs either local or global

16

Local access:
Data sent to one

Global access:
Data sent to all

State Synchronisation with Partial SEs

• Reading all partial SE instances results in set of partial values

• Requires application-specific merge logic
–  Merge task reconciles state and updates partial SEs

17

Merge
logic

State Synchronisation with Partial SEs

• Reading all partial SE instances results in set of partial values

18

Multiple
partial values

Merge
logic

State Synchronisation with Partial SEs

• Reading all partial SE instances results in set of partial values

• Barrier collects partial state

19

Multiple
partial values

Collect partial
values

Merge
logic

SDG for Collaborative Filtering

be scheduled for execution or materialised in a pipeline,
each with different performance implications. Some
frameworks follow a hybrid approach in which tasks on
the same node are pipelined but not between nodes.

Since tasks in stateless dataflows are scheduled to pro-
cess coarse-grained batches of data, such systems can
exploit the full parallelism of a cluster but they can-
not achieve low processing latency. For lower latency,
batched dataflows divide data into small batches for pro-
cessing and use efficient, yet complex, task schedulers
to resolve data dependencies. They have a fundamental
trade-off between the lower latency of smaller batches
and the higher throughput of larger ones—typically they
burden developers with making this trade-off [39].

Continuous dataflow adopts a streaming model with
a pipeline of tasks. It does not materialise intermedi-
ate data between nodes and thus has lower latency with-
out a scheduling overhead: as we show in §6, batched
dataflows cannot achieve the same low latencies. Due to
our focus on online processing with low latency, SDGs
are fully pipelined (see §3.1).

To improve the performance of iterative computation
in dataflows, early frameworks such as HaLoop [5] cache
the results of one iteration as input to the next. Recent
frameworks [15, 38, 25, 9] generalise this concept by
permitting iteration over arbitrary parts of the dataflow
graph, executing tasks repeatedly as part of loops. Simi-
larly SDGs support iteration explicitly by permitting cy-
cles in the dataflow graph.
Failure recovery. To recover from failure, frameworks
either recompute state based on previous data or check-
point state to restore it. For recomputation, Spark rep-
resents dataflows as RDDs [38], which can be recom-
puted deterministically based on their lineage. Contin-
uous dataflow frameworks use techniques such as up-
stream backup [14] to reprocess buffered data after fail-
ure. Without checkpointing, recomputation can lead to
long recovery times.

Checkpointing periodically saves state to disk or the
memory of other nodes. With large state, this becomes
resource-intensive. SEEP recovers state from memory,
thus doubling the memory requirement of a cluster [10].

A challenge is how to take consistent checkpoints
while processing data. Synchronous global checkpoin-
ting stops processing on all nodes to obtain consistent
snapshots, thus reducing performance. For example, Na-
iad’s “stop-the-world” approach exhibits low throughput
with large state sizes [26]. Asynchronous global check-
pointing, as used by Piccolo [30], permits nodes to take
consistent checkpoints at different times.

Both techniques include all global state in a check-
point and thus require all nodes to restore state after fail-
ure. Instead, SDGs use an asynchronous checkpointing
mechanism with log-based recovery. As described in §5,

updateUserItemnew
rating

rec
request merge

coOcc

rec
result

n1 n2

n3

State
Element

(SE)

dataflow

Task
Element

(TE)
getUserVec

updateCoOcc

user
Item

getRecVec

Figure 1: Stateful dataflow graph for CF algorithm

it does not require global coordination between nodes
during recovery, and it uses dirty state to minimise the
disruption to processing during local checkpointing.

3 Stateful Dataflow Graphs
The goal of stateful dataflow graphs (SDGs) is to make
it easy to translate imperative programs with mutable
state to a dataflow representation that performs paral-
lel, iterative computation with low latency. Next we de-
scribe their model (§3.1), how they support distributed
state (§3.2) and how they are executed (§3.3).

3.1 Model
We explain the main features of SDGs using the CF al-
gorithm from §2.1 as an example. As shown in Fig. 1,
an SDG has two types of vertices: task elements, t 2 T ,
transform input to output dataflows; and state elements,
s 2 S, represent the state in the SDG.

Access edges, a = (t,s) 2 A, connect task elements to
the state elements that they read or update. To facilitate
the allocation of task and state elements to nodes, each
task element can only access a single state element, i.e. A
is a partial function: (ti,s j) 2 A,(ti,sk) 2 A)s j = sk.
Dataflows are edges between task elements, d = (ti, t j) 2
D, and contain data items.
Task elements (TEs) are not scheduled for execution but
the entire SDG is materialised, i.e. each TE is assigned to
one or more physical nodes. Since TEs are pipelined, it is
unnecessary to generate the complete output dataflow of
a TE before it is processed by the next TE. Data items are
therefore processed with low latency, even across a se-
quence of TEs, without scheduling overhead, and fewer
data items are handled during failure recovery (see §5).

The SDG in Fig. 1 has five TEs assigned to three
nodes: the updateUserItem, updateCoOcc TEs realise the
addRating function from Alg. 1; and the getUserVec,
getRecVec and merge TEs implement the getRec function.
We explain the translation process in §4.2.
State elements (SEs) encapsulate the state of the compu-
tation. They are implemented using efficient data struc-
tures, such as hash tables or indexed sparse matrices. In
the next section, we describe the abstractions for dis-
tributed SEs, which span multiple nodes.

Fig. 1 shows the two SEs of the CF algorithm: the
userItem and the coOcc matrices. The access edges spec-

4

20

SDG for Logistic Regression

mergetrain

classify

weights

items

item result

21

• Requires support for iteration

Stateful Dataflow Graphs (SDGs)

22

Program.java Cluster

Annotated Java program
(@Partitioned, @Partial, @Global, …)

Static
program
analysis

SEEP distributed dataflow
framework

Dynamic
scale out &

checkpoint-based
fault tolerance

2

Data-parallel
Stateful

Dataflow Graph
(SDG)

Partitioned State Annotation

23

@Partitioned Matrix userItem = new Matrix();
Matrix coOcc = new Matrix();

void addRating(int user, int item, int rating) {
 userItem.setElement(user, item, rating);
 updateCoOccurrence(coOcc, userItem);
}

Vector getRec(int user) {
 Vector userRow = userItem.getRow(user);
 Vector userRec = coOcc.multiply(userRow);
 return userRec;
}

@Partition field annotation indicates partitioned state

hash(msg.id)

Partial State and Global Annotations

24

@Partitioned Matrix userItem = new Matrix();
@Partial Matrix coOcc = new Matrix();

void addRating(int user, int item, int rating) {
 userItem.setElement(user, item, rating);
 updateCoOccurrence(@Global coOcc, userItem);
}

@Global annotates variable to indicate access to all partial
instances

@Partial field annotation indicates partial state

Partial and Collection Annotation

25

@Partitioned Matrix userItem = new Matrix();
@Partial Matrix coOcc = new Matrix();

Vector getRec(int user) {
 Vector userRow = userItem.getRow(user);
 @Partial Vector puRec = @Global coOcc.multiply(userRow);
 Vector userRec = merge(puRec);
 return userRec;
}

Vector merge(@Collection Vector[] v){
 /*…*/
}

@Collection annotation indicates merge logic

Program.java

Java2SDG: Translation Process

26

Extract TEs, SEs
and accesses

Live variable
analysis

TE and SE
access code
assembly

SEEP runnable

SOOT
Framework

Javassist

Extract state and state access patterns through static code analysis

Generation of runnable code using TE and SE connections

Annotated
Program.java

Stateful Dataflow Graphs (SDGs)

27

Program.java Cluster

Annotated Java program
(@Partitioned, @Partial, @Global, …)

Static
program
analysis

SEEP distributed dataflow
framework

Dynamic
scale out &

checkpoint-based
fault tolerance

3

Data-parallel
Stateful

Dataflow Graph
(SDG)

Scale Out and Fault Tolerance for SDGs

• High/bursty input rates è Exploit data-parallelism

•  Large scale deployment è Handle node failures

28

0%

50%

100%

Partitioning
of state

Loss of state
after node
failure

Dataflow Framework Managing State

29

•  Framework has state management primitives to:
–  Backup and recover state elements
–  Partition state elements

•  Integrated mechanism for scale out and failure recovery
–  Node recovery and scale out with state support

E  Expose state as external entity to be managed by the distributed
dataflow framework

What is State?

A

C

B

Processing state Buffer state

Data
ts1

Data
ts2

Data
ts3

Data
ts4 User A

Item 2

User B

Item 1
2

4 1

5

30

State Management Primitives

ts - Makes state available to framework
- Attaches last processed data timestamp

Restore

ts
Backup

A

A1

Checkpoint

Partition

- Moves copy of state from
 one node to another

- Splits state to scale out tasks

A2
31

State Primitive: Checkpointing

• Challenge: Efficient checkpointing of large state in Java?
–  No updates allowed while state is being checkpointed
–  Checkpointing state should not impact data processing path

32

Dirty state

• Asynchronous, lock-free
checkpointing

1.  Freeze mutable state for checkpointing
2.  Dirty state supports updates concurrently
3.  Reconcile dirty state

State Primitives: Backup and Restore

B

Restore

Checkpoint

A

Data
t4

Data
t3

Data
t2

Data
t1

Data
t1

Data
t2

Data
t1

Data
t2

t2

Backup

t2

33

State Primitives: Partition

Processing state modeled as (key, value) dictionary

State partitioned according to key k
–  Same key used to partition streams

0-x

x-n

userId 0-n userId 0-x

userId x-n

A1

A2

userId 0-n 0-n

34

Failure Recovery and Scale Out

35

A

Two cases:
-  Node B fails è Recover
-  Node B becomes bottleneck è Scale out

B

Recovering Failed Nodes

36

B

B

B

New node
B

B

State restored and unprocessed data replayed from buffer

Use backed up state to recover quickly

E  Restore

Periodically, stateful tasks checkpoint and back up
state to designated upstream backup node

BBB E  Checkpoint

E  Backup

Scaling Out Tasks

37

B

A

B

For scale out, backup node already has state elements
to be parallelised

B1

New node

B

B1

B

B1

E  Partition

E  Restore

Finally, upstream node replays unprocessed
data to update checkpointed state

Distributed M-to-N Backup/Recovery

• Challenge: Fast recovery?
–  Backups large and cannot be stored in memory
–  Large writes to disk through network have high cost

38

• M to N distributed backup and
parallel recovery

–  Partition state and backup to
multiple nodes

–  Recover state to multiple nodes

Stateful Dataflow Graphs (SDGs)

39

Program.java Cluster

Annotated Java program
(@Partitioned, @Partial, @Global, …)

Static
program
analysis

SEEP distributed dataflow
framework

Dynamic
scale out &

checkpoint-based
fault tolerance

4

Experimental evaluation results

Data-parallel
Stateful

Dataflow Graph
(SDG)

Throughput: Logistic Regression

40

 0

 10

 20

 30

 40

 50

 60

25 50 75 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of nodes

SDG
Spark

100 GB training dataset for classification
Deployed on Amazon EC2 (“m1.xlarge” VMs with 4 vCPUs and 16 GB RAM)

SDG

Spark

SDGs have comparable throughput to Spark despite mutable state

Mutable State Access: Collaborative Filtering

Collaborative filtering, while changing read/write ratio (add/getRating)
Private cluster (4-core 3.4 GHz Intel Xeon servers with 8 GB RAM)

41

0

5

10

15

20

1:5 1:2 1:1 2:1 5:1

100

1000

Th
ro

ug
hp

ut
(1

00
0

re
qu

es
ts

/s
)

La
te

nc
y

(m
s)

Workload (state read/write ratio)

Throughput
Latency

SDGs serve fresh results over large mutable state

0

1

2

3

4

5

6

7

 0 500 1000 1500 2000
 0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

Tu
pl

es
/s

 (x
10

0K
)

N
um

be
r o

f V
M

s

Time (seconds)

Throughput (tuples/s)
Input rate (tuples/s)

Num. of VMs

Elasticity: Linear Road Benchmark

42

Scales to L=350
with 60 VMs

L=512 highest
reported result in
literature [VLDB’12]

•  Linear Road Benchmark [VLDB’04]
–  Network of toll roads of size L
–  Input rate increases over time
–  SLA: results < 5 secs

•  Deployed on Amazon EC2 (c1 & m1 xlarge instances)

SDGs can scale dynamically based on workload

Large State Size: Key/Value Store

Increase state size in distributed key/value store

43

 0

 0.5

 1

 1.5

 2

50 100 150 200
 1

 10

 100

 1000

T
h

ro
u

g
h

p
u

t
(m

ill
io

n
 r

e
q

u
e

st
s/

s)

L
a

te
n

cy
 (

m
s)

Aggregated memory (GB)

Throughput
Latency

SDGs can support online services with mutable state

Summary

44

• Programming models for Big Data matter
–  Logic increasingly pushed into bespoke APIs
–  Existing models do not support fine-grained mutable state

• Stateful Dataflow Graphs support mutable state
–  Automatic translation of annotated Java programs to SDGs
–  SDGs introduce new challenges in terms of parallelism and failure recovery
–  Automatic state partitioning and checkpoint-based recovery

• SEEP available on GitHub: https://github.com/lsds/Seep/

Peter Pietzuch
<prp@doc.ic.ac.uk>

http://lsds.doc.ic.ac.uk
Thank you! Any Questions?

Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Pietzuch, "Integrating Scale Out and
Fault Tolerance in Stream Processing using Operator State Management”, SIGMOD’13

Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Pietzuch, ”Making State Explicit for
Imperative Big Data Processing”, USENIX ATC’14

